3.24.76 \(\int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 (3+5 x)^{3/2}} \, dx\) [2376]

Optimal. Leaf size=79 \[ -\frac {33 \sqrt {1-2 x}}{\sqrt {3+5 x}}+\frac {(1-2 x)^{3/2}}{(2+3 x) \sqrt {3+5 x}}+33 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right ) \]

[Out]

33*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)+(1-2*x)^(3/2)/(2+3*x)/(3+5*x)^(1/2)-33*(1-2*x)^(1/2
)/(3+5*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 79, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {96, 95, 210} \begin {gather*} 33 \sqrt {7} \text {ArcTan}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )+\frac {(1-2 x)^{3/2}}{(3 x+2) \sqrt {5 x+3}}-\frac {33 \sqrt {1-2 x}}{\sqrt {5 x+3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)/((2 + 3*x)^2*(3 + 5*x)^(3/2)),x]

[Out]

(-33*Sqrt[1 - 2*x])/Sqrt[3 + 5*x] + (1 - 2*x)^(3/2)/((2 + 3*x)*Sqrt[3 + 5*x]) + 33*Sqrt[7]*ArcTan[Sqrt[1 - 2*x
]/(Sqrt[7]*Sqrt[3 + 5*x])]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(1-2 x)^{3/2}}{(2+3 x)^2 (3+5 x)^{3/2}} \, dx &=\frac {(1-2 x)^{3/2}}{(2+3 x) \sqrt {3+5 x}}+\frac {33}{2} \int \frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^{3/2}} \, dx\\ &=-\frac {33 \sqrt {1-2 x}}{\sqrt {3+5 x}}+\frac {(1-2 x)^{3/2}}{(2+3 x) \sqrt {3+5 x}}-\frac {231}{2} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx\\ &=-\frac {33 \sqrt {1-2 x}}{\sqrt {3+5 x}}+\frac {(1-2 x)^{3/2}}{(2+3 x) \sqrt {3+5 x}}-231 \text {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )\\ &=-\frac {33 \sqrt {1-2 x}}{\sqrt {3+5 x}}+\frac {(1-2 x)^{3/2}}{(2+3 x) \sqrt {3+5 x}}+33 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.38, size = 131, normalized size = 1.66 \begin {gather*} -\frac {\sqrt {1-2 x} (65+101 x)}{(2+3 x) \sqrt {3+5 x}}-33 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {2 \left (34+\sqrt {1155}\right )} \sqrt {3+5 x}}{-\sqrt {11}+\sqrt {5-10 x}}\right )-33 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {6+10 x}}{\sqrt {34+\sqrt {1155}} \left (-\sqrt {11}+\sqrt {5-10 x}\right )}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)/((2 + 3*x)^2*(3 + 5*x)^(3/2)),x]

[Out]

-((Sqrt[1 - 2*x]*(65 + 101*x))/((2 + 3*x)*Sqrt[3 + 5*x])) - 33*Sqrt[7]*ArcTan[(Sqrt[2*(34 + Sqrt[1155])]*Sqrt[
3 + 5*x])/(-Sqrt[11] + Sqrt[5 - 10*x])] - 33*Sqrt[7]*ArcTan[Sqrt[6 + 10*x]/(Sqrt[34 + Sqrt[1155]]*(-Sqrt[11] +
 Sqrt[5 - 10*x]))]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(153\) vs. \(2(64)=128\).
time = 0.10, size = 154, normalized size = 1.95

method result size
default \(-\frac {\left (495 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{2}+627 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x +198 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+202 x \sqrt {-10 x^{2}-x +3}+130 \sqrt {-10 x^{2}-x +3}\right ) \sqrt {1-2 x}}{2 \left (2+3 x \right ) \sqrt {-10 x^{2}-x +3}\, \sqrt {3+5 x}}\) \(154\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*(495*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+627*7^(1/2)*arctan(1/14*(37*x+20)*7^(
1/2)/(-10*x^2-x+3)^(1/2))*x+198*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+202*x*(-10*x^2-x+3)
^(1/2)+130*(-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)/(2+3*x)/(-10*x^2-x+3)^(1/2)/(3+5*x)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.49, size = 92, normalized size = 1.16 \begin {gather*} -\frac {33}{2} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {202 \, x}{3 \, \sqrt {-10 \, x^{2} - x + 3}} - \frac {317}{9 \, \sqrt {-10 \, x^{2} - x + 3}} + \frac {49}{9 \, {\left (3 \, \sqrt {-10 \, x^{2} - x + 3} x + 2 \, \sqrt {-10 \, x^{2} - x + 3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="maxima")

[Out]

-33/2*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 202/3*x/sqrt(-10*x^2 - x + 3) - 317/9/sqrt(-
10*x^2 - x + 3) + 49/9/(3*sqrt(-10*x^2 - x + 3)*x + 2*sqrt(-10*x^2 - x + 3))

________________________________________________________________________________________

Fricas [A]
time = 0.93, size = 86, normalized size = 1.09 \begin {gather*} \frac {33 \, \sqrt {7} {\left (15 \, x^{2} + 19 \, x + 6\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 2 \, {\left (101 \, x + 65\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{2 \, {\left (15 \, x^{2} + 19 \, x + 6\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="fricas")

[Out]

1/2*(33*sqrt(7)*(15*x^2 + 19*x + 6)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x -
 3)) - 2*(101*x + 65)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(15*x^2 + 19*x + 6)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (1 - 2 x\right )^{\frac {3}{2}}}{\left (3 x + 2\right )^{2} \left (5 x + 3\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)/(2+3*x)**2/(3+5*x)**(3/2),x)

[Out]

Integral((1 - 2*x)**(3/2)/((3*x + 2)**2*(5*x + 3)**(3/2)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 252 vs. \(2 (64) = 128\).
time = 0.57, size = 252, normalized size = 3.19 \begin {gather*} -\frac {33}{20} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} - \frac {11}{10} \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )} - \frac {154 \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{{\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)/(2+3*x)^2/(3+5*x)^(3/2),x, algorithm="giac")

[Out]

-33/20*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^2/
(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 11/10*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/s
qrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22))) - 154*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5)
- sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5) -
 sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))^2 + 280)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (1-2\,x\right )}^{3/2}}{{\left (3\,x+2\right )}^2\,{\left (5\,x+3\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - 2*x)^(3/2)/((3*x + 2)^2*(5*x + 3)^(3/2)),x)

[Out]

int((1 - 2*x)^(3/2)/((3*x + 2)^2*(5*x + 3)^(3/2)), x)

________________________________________________________________________________________